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Abstract

A class of problems in air traffic management asks for a scheduling al-
gorithm that supplies the air traffic services authority not only with a
schedule of arrivals and departures, but also with speed advisories. Since
advisories must be finite, a scheduling algorithm must ultimately produce
a finite data set, hence must either start with a purely discrete model
or involve a discretization of a continuous one. The former choice, often
preferred for intuitive clarity, naturally leads to mixed-integer programs,
hindering proofs of correctness and computational cost bounds (crucial
for real-time operations). In this paper, a hybrid control system is used
to model air traffic scheduling, capturing both the discrete and continu-
ous aspects. This framework is applied to a class of problems, called the
Fully Routed Nominal Problem. We prove a number of geometric results
on feasible schedules and use these results to formulate an algorithm that
attempts to compute a collective speed advisory, effectively finite, and
has computational cost polynomial in the number of aircraft. This work
is a first step toward optimization and models refined with more realistic
detail.
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1 Introduction

Management of air traffic that is confined to a network of nominal routes
requires that each aircraft be scheduled to at least a few crucial way-
points and arrive at each waypoint as near as possible to the scheduled
time. This requirement gives rise to an entire class of scheduling prob-
lems, which vary by airspace configuration and various flight restrictions,
such as speed- or altitude ranges, aircraft type, and weather. Since the
airspace is often modeled as a directed graph, and a schedule as a chart
that estimates for each aircraft a time of arrival at each of the finitely
many waypoints, models of centralized scheduling of arrivals are fre-
quently also sought in this, discrete, setting [1–7].

In such a model, aircraft are scheduled only at specific points (the
vertices of the graph), with no time stamps maintained or imputed of
the aircraft’s position or speed away from such a point. One weakness
of such inherently discrete models is their principal inability to assure,
without adding artificial constraints, pairwise separation between the
aircraft continuously in time, as is operationally required [8]. Another
weakness, specific to the models that lead to a mixed-integer program
(MIP) [9], is the difficulty of finding an algorithm that performs suffi-
ciently better than the NP -hard worst case of a general mixed-integer
linear program (MILP) [10], although a number of the algorithms devel-
oped for solving a MILP modeling air traffic have been shown to perform
with a running time polynomial in the number of aircraft (see, for ex-
ample, [5,11]). However, while sufficient constraints can be imposed in a
discrete model to assure separation at all times, the authors are unaware
of published discrete models that assure such separation and show com-
putational performance suitable for aircraft traffic in a terminal airspace.

In this paper, we approach the scheduling of air traffic as a time-
continuous problem. The hybrid control system (HCS) framework pro-
posed in [12] is used for modeling air traffic motion continuously in time
in a broad class of airspace regions represented as directed multigraphs.
A schedule sought in this framework is, thus, a speed advisory, i.e. a
continuous time parameterization of each aircraft’s motion along a pre-
determined path. The pairwise separation requirements are imposed in
continuous time.

This framework has two main merits. First, it is capable of captur-
ing realistically the following aspects of the research field of Air Traffic
Management (ATM): separation requirements for every pair of aircraft at
every instant in time, speed restrictions, off-nominal routes, and uncer-
tainty in the actual times of an aircraft’s arrival at a waypoint. Second,
it rests on the apparatus of HCS, which is relatively well-understood
theoretically [13–19] and furnished with general numerical methods (see,
e.g., [20]). While no optimization is pursued in this paper, and only
feasible trajectories are sought for a given HCS, the framework can serve
as a setting for problems in optimal control [12].
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The contribution of this paper is an algorithm for the class of Fully
Routed Nominal Problems (section 6.1) in ATM, where the goal is to
guide a given finite set of aircraft, each along its pre-determined path,
out of the route network in a separation-compliant way. The algorithm,
formulated in section 7, constructs, or reports failure to construct, a fea-
sible (i.e., compliant with the separation and speed range constraints)
speed advisory that guides all the aircraft as required. The computa-
tional cost is shown to be bounded by a low-degree polynomial in the
number of aircraft.

2 Background

The inherently discrete models mentioned in section 1 have historic ori-
gins. Planning of air transportation, from the time it came into mass
use and to the time of this writing, has in practice been based on two
doctrines, i), that scheduling and separation assurance are two separate
tasks and, ii), that a schedule need not synthesize for each aircraft a
4-D aircraft trajectory (i.e., a time-parameterized curve in 3-D space),
but only specify an appropriate set of waypoints and the times at which
they should be reached by the aircraft. (Current air transportation oper-
ations rely on Air Traffic Control (ATC) [8] to devise and issue clearance
instructions to each aircraft and to modify the schedule when necessary
in order to maintain aircraft separation.) While automated trajectory
synthesis has received some attention from researchers (see [21] and ref-
erences within) and is finding its way into air traffic operations (see,
e.g., [22, 23]), doctrine i) remains a dominant practice: currently such
synthesis does not meet, simultaneously, a given schedule and the time-
continuous pairwise separation requirement.

As these conservative tendencies have persisted, increases in traf-
fic demand have hampered ATC’s mission–to promote “safe, orderly,
and expeditious flow of traffic” [8]–in all aspects except safety. To ad-
dress these newly arising difficulties of ATC, researchers have sought
to minimize various performance indices. Examples of such indices are
makespan [2, 5], fuel burn [24, 25], average or total delay [3, 24], excess
separation [25], and deviation from preferred time of arrivals and depar-
tures [1]. With this broadened focus, researchers have approached var-
ious types of air traffic scheduling problems in terminal airspace using
such frameworks as dynamic network flows, constraint-based scheduling,
and scheduling combined with separation considerations; a detailed sur-
vey, references, and discussion of this past research can be found in [26].

Further work on, and wider use of, automated generation of 4-D tra-
jectories, as envisioned in the future [27], will raise the question of how
the responsibility for scheduling and for separation should be divided
between the automation system and the human controller. Having 4-D
trajectory generation handled by the automation, and separation assur-
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ance by the controller, would leave the controller with the full weight
of separation responsibility while considerably restricting their freedom
in the choice of aircraft maneuvers. Such a practice is likely to limit
the benefits associated with the use of 4-D trajectories and likely to
be unacceptable to air traffic controllers. This consideration has led us
to consider an investigation, undertaken herein, of algorithms for 4-D
trajectory generation that aim, as a controller does today, to maintain
separation along the entire continuous trajectory for each aircraft.

3 An HCS Model of an Airspace
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A portion of the LAX Terminal Airspace 
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Figure 1. A portion of the LAX terminal airspace for arriving traffic.
The thin arrows indicate the traffic directions.

For the operational purposes of ATM, an airspace is regarded as a region
with a set of marked points, called waypoints. Some pairs of waypoints
are connected by route segments. (For example, a portion of the airspace
surrounding the Los Angeles International Airport is shown in Fig. 1.)

The same pair of points may be connected by more than one segment.
In practice, a route segment directly connecting a pair of waypoints is
rectilinear, but this assumption is made here only in section 6. This
setting is naturally modeled by a directed multigraph [28]: the waypoints
are the vertices, while the route segments are the edges. A sequence of
route segments with every consecutive pair adjacent is called a route and
is none other than the graph-theoretic path [28].

Although the application central to this paper is in ATM, the follow-
ing construct is, in principle, suitable for any finite set of moving agents
whose movement is confined to a route network. Assume one is given
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the following data:

1. A directed multigraph G = (V,E), each vertex v ∈ V being a point
in a Euclidean space E of dimension 2 or 3. If e ∈ E is an edge from
v1 ∈ V to v2 ∈ V , then the nominal route segment from waypoint
v1 to waypoint v2 is a curve in E, connecting v1 to v2. All such
curves will henceforth be assumed rectifiable [29, section 4.6-9] and
capable of a parameterization which is continuous and piecewise
continuously differentiable. A cusp in the curve can be traversed
with the assumption (made throughout this paper) that inertia is
neglected, and approximately smoothed if inertia is included. The
outdegree and indegree of a vertex are allowed arbitrary values. To
emphasize the aerospace context, the multigraph G = (V,E) will
be called a route network.

2. A finite set A = {1, . . . , A}. of moving agents α ∈ A in G. If agent
α is moving along edge e, the agent’s position is specified by the
arc length coordinate yαe along a path containing e; the choice of
arc length coordinates will be clarified as the model is developed
and will always have the coordinate increase along the direction of
the edge.

3. For each agent α ∈ A, a specification of the agent’s initial position,
which is a point in G specified, for example, by an edge in G and
a fractional distance along that edge.

4. The inertia-free dynamical law [13] (henceforth the dot denotes
differentiation with respect to physical time t) ẋαe = sαe , where the
sαe ’s are the corresponding speeds, describing the motion of those
agents α that have not yet exited the system. In what follows, and
with the details provided in the following paragraph, the coordi-
nates xαe will play the role of state variables; the speeds sαe , of the
control variables.

5. State constraints: the separation requirement for each pair of agents.
This requirement is described mathematically, in terms of the co-
ordinates xα, in section 4. A state in which at least one pair of
agents violates the separation requirement will be called a conflict-
ing state.

6. Control constraints: bounds on the speeds sαe .
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Figure 2. Examples of three discrete modes with edge set E =
{e1, e2, . . . , e6} and moving agent set A = {1, 2, 3} (A = 3). The agents
are shown as numbered gray squares. The discrete modes shown are: (A)
µ1 : µ1(1) = e1, µ1(2) = e1, µ1(3) = e4; (B) µ2 : µ2(1) = e1, µ2(2) =
e2, µ2(3) = e4; (C) µ3 : µ3(1) = e1, µ3(2) = e3, µ3(3) = e4.

One choice of a hybrid control system (HCS) [13] fit for modeling
coordinated multi-agent motion in a route network G was introduced
in [12]. In this HCS, one defines each discrete mode (in [13], location) as
a mapping µ : A → E, which specifies for each agent α the edge µ(α)
currently occupied by that agent. Examples of three discrete modes on
a 6-edge route network with 3 moving agents are shown in Fig. 2.
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Figure 3. (A-C) The continuous state spaces Xµ1
,Xµ2

,Xµ3
correspond-

ing to discrete modes µ1, µ2, µ3 from Fig. 2. Among the discrete modes
the system may enter from µ1 are µ2 and µ3, accordingly as agent 2
enters e2 or e3. Conflicting states not shown. (D) A gluing of Xµ1

to
Xµ2

and to Xµ3
. Glued, all three state spaces share a face, but no two

have any other points in common. Conflicting states not shown.

Denoting the arc length parameterization of edge µ(α) by xαµ , the
dynamical law corresponding to discrete mode µ is given by the system
ẋαµ = sαµ, α ∈ A, of differential control equations. Suppose each xαµ
ranges from 0 to the length l(µ(α)) of edge µ(α). The set Xµ of all

continuous states xµ = (xαµ)α∈A =
(

x1µ, x
2
µ, . . . , x

A
µ

)

in discrete mode

µ is then obtained by taking the A-dimensional parallelotope given by
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the Cartesian product
∏

α[0, l(µ(α))] and removing from it all states
that violate the separation constraint for at least one pair of agents
(conflicting states). (The set Xµ is an example of a roadmap coordination
space, defined in [30, section 1.2].) For example, Fig. 3A shows the Xµ1

for discrete mode µ1 from Fig. 2A; the conflicting states are not shown
in Fig. 3.

One must then specify, for each pair of states xµ ∈ Xµ, xµ′ ∈ Xµ′ ,
whether it is possible for the system to go from one to the other, thus
switching from one discrete mode to another, instantly. The set, denoted
Sµ,µ′ , of all such state pairs (xµ,xµ′) for a given pair of discrete modes
µ, µ′ is called a switching set [13]. For this HCS, the switching sets are
completely determined by the following condition: (xµ,xµ′) ∈ Sµ,µ′ if
and only if there is at least one agent, α, that in discrete mode µ occupies
a vertex v ∈ V with coordinate xαµ = l(µ(α)), and in discrete mode µ′

occupies that same vertex with coordinate xαµ′ = 0. Thus, as the system
switches from µ to µ′, agent α exits edge µ(α) and enters edge µ′(α).
Geometrically, the switching sets are described by a topological gluing
[31] (similar to that used in [17, section 3]) between the corresponding
continuous state spaces Xµ and Xµ′ : the right endpoint of [0, l(µ(α))]
is identified with the left endpoint of [0, l(µ′(α))]. If the transition from
µ to µ′ involves a change of edge for more than one agent, then each
of these agents effects a gluing. Thus, the face xαµ(α) = l(µ(α)) of Xµ

is to be glued to the face xα
µ′(α) = 0 of Xµ′ for each discrete mode µ′

that allows a direct transition from µ. (For example, in Fig. 3(A-C), the
“top” (in the sense of the Figure) face of Xµ1

is glued to the bottom face
of Xµ2

and of Xµ3
; see Fig. 3D.) The state space obtained by carrying

out all such gluings, and denoted X, is called the global continuous state

space. Denoting the gluing operation by the non-standard symbol
glue
∪ ,

one has X =
glue
∪ µ Xµ. Since the set of the conflicting states in each

Xµ is closed [29], as it will be defined below using sharp inequalities,
two states xµ,xµ′ identified as a result of the above gluing are either
both conflicting or both separation-compliant. It follows from the above
that every global continuous state space is a chain of dimension A on
RA [32, section 35E] with the conflicting states removed, but generally
fails to be a differentiable manifold [32].

The only discrete control variable appearing in this HCS would thus
be the one indicating, for an agent reaching a vertex of outdegree ≥ 2,
which edge the agent is to take (or whether the agent should exit the
system) when leaving that vertex.
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4 The Geometry of a Minimal Separation Re-

quirement
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Figure 4. Agents 1, 2 on their respective rectilinear edges e1, e2, which
share a common vertex, taken as the origin 0 in R2. The orientation
of the edges is not specified. (A) The unit vectors a1,a2 are collinear
with the respective edges, but their directions do not necessarily agree
with the edges’ orientations. (B) With suitably chosen scalar coefficients
c1, c2, the vectors c1a1 and c2a2 are the respective position vectors of the
two agents.

In some types of transportation, including aircraft and trains, every pair
of moving agents must be separated by a distance no smaller than a pre-
determined minimal separation. Such requirements can be asymmetric
and anisotropic; for a detailed discussion, see [12, section II]. Here we
will characterize states that violate the separation requirement using
conservative approximations, addressing only the following asymmetry:
if two moving agents are in-trail (i.e., one is directly following the other
along a route segment which is not necessarily in a horizontal plane) and
have different weight classes, then the minimal separation can depend on
the weight class of the agent in front. (For example, if an aircraft of type
Heavy is directly following one of type Small, the required separation is
smaller than if the aircraft were interchanged.) To capture this potential
asymmetry, for each pair α1, α2 of agents with the first one leading, we
introduce the minimal separation rα1,α2

. If the asymmetry takes place,
it can be written

rα1,α2
6= rα2,α1

(1)

We now calculate the set of all conflicting states in a discrete mode µ of an
HCS described above; recall that these are the states where at least two
agents violate the separation requirement. The scenario shown in Fig.
4A has two agents on two different rectilinear edges, which need not lie
in a horizontal plane, with a common vertex and no specified orientation.
(If the edges are curvilinear with low curvature near a common vertex
or intersection, these portions can be approximated by linear segments;
otherwise, the analysis becomes considerably more complicated.)
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Remark 4.1. Since edge orientation is not specified, Fig. 4 describes
four cases: both agents are moving toward the common vertex, both mov-
ing away from the common vertex, and two more cases in which one agent
moves toward, and the other away from, the common vertex.

(A)

c
2
 

c
1
 

(B)

c
2
 

c
1
 

Figure 5. (A) An example of two elliptical sectors in the c1c2-plane
corresponding to conflicting states. (B) An example of two stripes in the
c1c2-plane corresponding to conflicting states of two agents on the same
edge.

We will use the Euclidean inner product [29] 〈·, ·〉 and the correspond-
ing norm [29] || · || in the 2-D space containing the two edges. Pick the
common vertex as the origin and the unit vectors a1,a2 as the basis
vectors that, regardless of the edge orientations, point from the origin
toward the respective agents. With suitable scalars c1, c2, the vectors
c1a1 and c2a2 are the agents’ respective position vectors. The squared
distance between the two agents, denoted by D2, is

D2 = ||c1a1 − c2a2||
2 = (c1)

2 + (c2)
2 − 2c1c2〈a1,a2〉

Equating D2 to the squared minimal separation, say, r21,2, we obtain the
equation

D2 = r21,2

of an ellipse in the c1c2-plane. The corresponding set of conflicting sets
is described by the elliptical sector obtained by intersecting the open
octant c2 > c1 > 0 with the ellipse-bound region D2 < r21,2 (respectively,
D < r22,1) when agent 1 (respectively, agent 2) is the one closer to the
origin. The role of the angle θ between the edges e1, e2 in both sectors is
the equality 〈a1,a2〉 = cos(θ). An example of two such sectors is shown
in Fig. 5A. The asymmetry of the gray-shaded region about the dashed
diagonal is the asymmetry (1).

In each of the four cases listed in Remark 4.1, the respective contin-
uous state coordinates x1µ, x

2
µ of agents 1, 2 in discrete mode µ map to

the coefficients c1, c2, as follows:

1. If both agents are moving toward the common vertex, then xαµ =
l(eα)− cα for α = 1, 2.

2. If both agents are moving away from the common vertex, then
xαµ = cα for α = 1, 2.
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3. If agent 1 is approaching, and agent 2 going away from, the common
vertex, then x1µ = l(e1)− c1, x

2
µ = c2.

4. If agent 2 is approaching, and agent 1 going away from, the common
vertex, then x1µ = c1, x

2
µ = l(e2)− c2.

If θ ≥ 90◦, then in the last two cases µ allows only one in-trail sequence,
so the minimal separations used for the two sectors in Fig. 5A are equal.
If the two agents 1, 2 are on the same edge, then the set in the c1c2-plane
of the conflicting states appears as in Fig. 5B and is, in accordance
with (1), asymmetric about the dashed diagonal. The mapping from the
continuous state coordinates x1µ, x

2
µ to the coefficients c1, c2 is constructed

analogously to the above four cases.

(A)

1


2


(B)

2


1


(C)

Figure 6. An example of two agents whose paths overlap. The black
star shows the beginning of the overlap in (A) and the corresponding
state (both agents being at that point) in (B); the white star, the end
of the overlap in (A) and the corresponding state (both agents being at
that point) in (B). The system, shown in (A), has seven discrete modes
with both agents in the transportation network. Each mode’s set of
separation-violating states, shown in (B) as a connected [31] gray region,
is “glued” to some of the others. The result of the gluing is the connected
region shown in (C).

The above calculation is illustrated, for an example of two moving
agents, in Fig. 6. Each discrete mode’s set of conflicting states is shown
as a connected [31] gray region. For dimension A above 2, one must
compute for each pair of agents the set of states violating the separation
requirements. Each such set is a cylinder, or union of cylinders, with the
base shaped as shown in Fig. 6C, in the total state space ∪µXµ. We
note that the set of all separation-violating states in ∪µXµ is cylindrical
in the sense of [33, Definition 2.2], the latter definition a key requirement
for the applicability of a number of theoretical results of [33].

5 An Alternative: Path-Based Transportation

HCS

The HCS defined in this section will be instrumental in a precise formu-
lation of the Fully Routed Nominal Arrival problem, defined in section
6.1. Assume the data 1)-6), listed in section 3, are given.
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1. For each agent α ∈ A, let eINIT ;α denote the edge occupied initially
by agent α. (Two or more agents can occupy the same edge.)

2. Let P
(

eINIT ;α
)

be the set of all paths in the multigraph that

begin with the edge eINIT ;α and end with an edge that contains
an acceptable destination for α. Denote the length of a path p ∈

P
(

eINIT ;α
)

by l(p).

3. Define each discrete mode as a mapping that assigns each agent

α to a path in P
(

eINIT ;α
)

. In more detail, ν is a mapping from

the set A of moving agents to the union ∪αP
(

eINIT ;α
)

such that

ν(α) ∈ P
(

eINIT ;α
)

for each α ∈ A.

4. In each ν, have the arc length coordinate yαν evolve according to
the dynamical law

ẏαν = sαν , α ∈ A, (2)

where sαν is the control variable corresponding to the agent’s speed
of motion along the path.

5. For each agent α and each discrete mode µ, specify the speed con-
straint

Sα;min
µ ≤ sα ≤ Sα;max

µ , (3)

where [Sα;min
µ , Sα;max

µ ] is the speed range allowed for agent α in
discrete mode µ.

Definition 5.1. The HCS defined in this section will be called a path-
based transportation HCS.

In a path-based transportation HCS, every discrete mode ν corre-
sponds to a possible routing of the agents in A, and every execution
occurs in only one discrete mode. It follows that the discrete controls
in a path-based transportation HCS are, effectively, identified with the
discrete modes, and play but a trivial role.

6 A Geometric Theory of the Fully Routed Nom-

inal Arrival Problem

The geometric results obtained in this section will be used in the formu-
lation of the algorithm in section 7 to prove correctness and bounds on
computational costs for some of the steps.
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6.1 Problem Definition and Geometric Properties

In this section, we describe and analyze theoretically a subclass of the
HCS defined above, the analysis being a foundation for the algorithm in
section 7. This subclass represents a most commonly modeled scenario
of air traffic, which is arriving in merging and, possibly, diverging flows,
with no multiple routing options: each arriving aircraft follows without
deviation a prescribed path in the route network. Consequently, the
resulting path-based transportation HCS (definition 5.1) has only one
discrete mode. Henceforth, the moving agents are aircraft. The subscript
ν will be dropped for brevity.

Remark 6.1. The assumption that each aircraft is assigned a route may
not always hold. In cases when such assignment (known in Air Traffic
Operations as routing) is not given, but is sought as part of the problem,
the corresponding HCS has multiple discrete modes. The theory and
algorithm developed in this section can then be used for each of those
discrete modes, and the result computed in one of the modes selected
later as final. See [12] for an analysis of computational costs and the
possibility of parallel computation of routing.

The problem consists in computing a control strategy (sα(t))α∈A that
will, in accordance with dynamical law (2), take each aircraft to the end
of its prescribed path. To ATM operations, such a control strategy would
serve as a speed advisory. This problem will be called the Fully Routed
Nominal Arrival problem. It consists in finding feasible trajectories. No
optimization is pursued.

Section 6.2 gives a list of assumptions made to simplify the compu-
tations. As is shown below, these assumptions allow a solution by an
algorithm that is noniterative and proven to halt in polynomial time (in
the number of aircraft). Because of the urgency that can accompany
ATM decisions, this bound on computation time is a highly desired fea-
ture of every solution candidate to be deployed as an operational tool in
the field, especially for automated tools responsible for both separation
assurance and scheduling.

6.2 Simplifying Assumptions and Their Implications

Assumption 6.1. All control strategies considered before section 9 will
be assumed executable with certainty, i.e. without execution error that
may be caused by wind, transportation performance, or human factors.
In particular, under this assumption, the aircraft is able to follow its
prescribed route exactly, without deviation.

An approach to including execution uncertainty in the model is dis-
cussed in section 9.
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Assumption 6.2. All aircraft have the same cruising speed range,

[Smin, Smax]

Assumption 6.3. All aircraft pairs have the same required minimal
separation distance, henceforth denoted r.

Assumption 6.4. During the execution of the algorithm described in
section 7, below, no new aircraft enter the system.

6.3 Geometry of the Global Continuous State Space

6.3.1 The Global Coordinate System

Since the system is fully routed, each aircraft α is assigned a uniquely
determined path, whose length will henceforth be denoted Mα, α =
1, . . . , A. Accordingly, the global state space Y for the problem can
be obtained by removing from the parallelotope

∏

α∈A[0,Mα] all the
conflicting states. We choose the coordinate system, for the whole of
Y , so that the state variable yα indicates the arc length coordinate of
aircraft α on its path and ranges from 0 to Mα. Unless said otherwise,
all state variables are regarded as coordinates referred to the standard
basis e1 = (1, 0, . . . , 0, 0), . . . , eA = (0, 0, . . . , 0, 1).

6.3.2 The Target Set and the Distal Boundary

(A)

distal edges 

0 

(B)

M 

0 

Figure 7. The case of A = 3 aircraft: (A) The distal edges and the target
set, and (B) an illustration of the distal boundary.
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The vertex M = (M1, . . . ,MA) of Y will be called the distal vertex of
Y . The faces of Y containing the distal vertex will be called distal faces.
Distal faces of dimension 1 will be called distal edges. Since the distal
edges correspond, one-to-one, to states in which all but one aircraft have
exited the airspace, we define the target set of the Fully Routed Nominal
Arrival problem as the union of all distal edges. Fig. 7A illustrates the
distal edges for 3 aircraft.

The union of all the (A− 1)-dimensional faces adjacent to the distal
vertex will be called the distal boundary. An illustration of the distal
boundary for the case of 3 aircraft is given in Fig. 7B.

6.3.3 Polygonally Approximated Pairwise Conflict Zones: the
Geometric Properties Used in the Algorithm

Each pairwise conflict zone will be approximated here by a polygon that
is the intersection of three half-planes. This approximation achieves
considerable computational advantage, but likely incurs a cost if an op-
timization were pursued: by enlarging the conflict zone, one restricts the
class of considered candidate solutions. This loss would be most severe
if at least two of the paths of the agents were to cross (the relevant
operational concepts are same courses, crossing courses, and opposite
courses; see [8, section 1-2-2].) In the framework of the above model,
such a crossing can be viewed as a short overlap (compare to Fig. 6). To
analyze the geometry of the conflicting state sets that result from this
approximation in the global state space X, it will be convenient to in-
troduce the technical terms of protrusion, safe wedge, innermost conflict
edge, and distal innermost conflict-free point.

In the A-dimensional Euclidean space RA, define the unit vector
d = 1√

A
(1, 1, . . . , 1).

Let Hα1,α2;−1 andHα1,α2;+1 denote, respectively, the half-spaces con-
sisting of all states y = (y1, . . . , yA) satisfying yα1 − yα2 > −rα1,α2 and
yα1 − yα2 < rα1,α2 , where rα1,α2 is the sum of the required minimal sep-
aration distance between aircraft α1 and α2 and a “buffer,” which is a
value sufficiently large to make sure that the obtained polygonal approx-
imation contains all of the exact pairwise conflict zone depicted in Fig.
6C.
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(A)

M

d

(B)

M

d

(C)

M

d

(D) (E)

innermost
conflict−
free

edges

M

d

DICPs

Figure 8. The shaded regions are the orthogonal projections of the half-
spaces (A) Hα1,α2;−1, (B) Hα1,α2;+1, and (C) Fα1,α2 onto the yα1yα2-
plane. Their intersection is the polygonal approximation, shown in Fig.
8D, of the conflict zone for α1, α2. (D) An approximation of a pairwise
conflict zone (Fig. 6C) by a polygonal region equal to the intersection
of three half-planes. (E) The geometry of the safe wedges (shaded) and
DICPs.

Define the half-space Fα1,α2 to consist of all states y satisfying 〈y−
M,−d〉 < fα1,α2 , where fα1,α2 is the orthogonal distance from M to the
bounding hyperplane of Fα1,α2 (Fig. 8).

The pairwise conflict zone for the aircraft pair α1, α2 is, then, ap-
proximated by the open [29] polyhedral region

Zα1,α2 = Hα1,α2;−1 ∩Hα1,α2;+1 ∩ Fα1,α2 , (4)

depicted in Fig. 8D. The distance fα1,α2 will be called the protrusion of
the conflict zone (4).

6.3.4 Safe Wedges, Innermost Conflict Edges, and Distal In-
nermost Conflict-Free Points (DICPs)

The intersection Hα1,α2;−1 ∩ Hα1,α2;+1 is a conflicting slab of the form
|yα1−yα2 | < r. By “removing” from the A-dimensional Euclidean space
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RA all the conflicting slabs (i.e., the slabs corresponding to all pairs of
aircraft), one obtains a pairwise disjoint collection of A! polyhedral re-
gions, called safe wedges. The intersection of a safe wedge with the global
continuous state space is a conflict-free region and has a 1-dimensional
face (a line) parallel to d. This line will be called an innermost conflict-
free edge. The intersection of this edge with a distal face of dimension
(A − 1) is a point called a distal innermost conflict-free point (DICP).
Safety wedges and DICPs for the case of A = 2 aircraft are illustrated
in Fig. 8E.

Consider “the positive A-dimensional quadrant”

RA
≥0 = {(y1, y2, . . . , yA) : yα ≥ 0 for all α}

of the A-dimensional Euclidean space RA. For each permutation σ of
the indices 1, . . . , A, the set of all y = (y1, y2, . . . , yA) such that

0 ≤ yσ(1) < yσ(2) < . . . < yσ(A) (5)

determines a subset Yσ of the “quadrant” RA
≥0.

Definition 6.1. The subset Yσ (in fact, the interior of a polyhedral
angle) will henceforth be called the basic polyhedral angle corresponding
to the permutation σ.

Note: Henceforth, the end of a mathematical proof is marked by an
open square.

Lemma 6.1. If the permutation σ is such that the safe wedge W consists
of all y = (y1, y2, . . . , yA) with

yσ(α) ≤ r + yσ(α+1) for α = 1, 2, . . . , A− 1, (6)

then W is contained in Yσ.

Proof. Condition (5) follows from (6).

Theorem 6.1. If all the required minimal distances for in-trail separa-
tion have the same value, r, then the coordinate A-tuple of every DICP
is the sum of M and a permutation of 0,−r,−2r, . . . ,−(A − 1)r, and,
conversely, every such permutation gives a DICP .

Proof. These A-tuples are exactly those at which all constraints (6) are
active.

6.3.5 The Cone of Attainability, Feasible Trajectories, and
Feasible Solutions

The flow of the traffic consisting of A aircraft α = 1, . . . , A can be seen
as a trajectory (y1(t), y2(t), . . . , yA(t)) of the inertia-free dynamical law
(2).
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Remark 6.2. Throughout this paper, the term collective trajectory (or,
simply, trajectory) will mean a time-parameterized curve

(y1(t), y2(t), . . . , yA(t))

in the global continuous state space X that satisfies (2) for some choice
of a control strategy s(t) = (s1(t), . . . , sA(t)). This usage of the term
trajectory differs from that commonly seen in Air Traffic Management.

(A)

(t)y

y
0= (y , y )1 2

0 0

(B)

(C)

Figure 9. An example with two aircraft. The conflict zone is as in Fig.
8D. (A) A collective state trajectory y(t), with initial state y(0) = y0.
(B) The cone of attainability C(y0) (shown in the lighter shade) at y0.
(C) The cone is positioned so that there are no feasible solutions.

Recall assumption 6.2. A segment y0 y in X is said to be attainable
if all aircraft pairs (α1, α2) satisfy

Smin

Smax
(yα2 − yα2

0 ) ≤ yα1 − yα1

0 ≤
Smax

Smin
(yα2 − yα2

0 ) (7)

A ray emanating from y0 is said to be attainable if for every point y on
the ray the segment y0y is attainable. The union of all attainable rays
emanating from y0 is a polyhedral cone, called the cone of attainability at
y0 and denoted C(y0). This cone is a pointed cone with vertex y0. A col-
lective trajectory y(t) with initial state y(0) = y0 is said to be attainable
if it is piecewise differentiable and, at every point y of differentiability,
the corresponding tangent vector lies in the cone of attainability at y.
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A conflict-free attainable trajectory is said to be feasible. A 2-aircraft
example is shown notionally in Fig. 9.

Definition 6.2. A feasible trajectory whose final state is in the target
set is called a feasible solution.

The following lemma characterizes all the collective states from which
it is safe to have all aircraft fly at the same speed.

Lemma 6.2. If y0 is a DICP, then there exists a feasible solution with
initial state y0. Consequently, a feasible trajectory with the final state a
DICP can be extended to a feasible solution.

Let |·|∞ denote themax norm, defined for a vector ξ = (ξ1, ξ2, . . . , ξA)
in RA by |ξ|∞ = maxα |ξα|.

Proof. The collective trajectory y(t) = y0 + tSmax 1
|d|∞d, with the α-th

component excluded once aircraft α exits the global continuous state
space, is conflict-free since y0 lies in a safe wedge and since ẏ is co-
directional with d.

6.3.6 The Geometry of FCFS: the Closest DICP to y Corre-
sponds to the Safe Wedge Containing y

The key result of this section, theorem 6.2, tells how to find (in time
O(A2)) a DICP that requires “minimal position shifting” to be performed
on the current collective state.

Lemma 6.3. If a = (a1, a2) and b = (b1, b2) are vectors in the first oc-
tant of the 2-dimensional Euclidean space R2 with Cartesian coordinates
y1, y2, i.e. satisfy 0 < a1 < a2 and 0 < b1 < b2, then

a1b1 + a2b2 > a1b2 + a2b1 (8)

Proof. Both a and b lie in the positive quadrant of the plane and below
the diagonal y1 = y2. Therefore, the angle between a and b is smaller
than that between a and b′ = (b2, b1) (the latter point being above the
diagonal). Since all angles are between 0 and π/2, one has 〈a,b〉 >
〈a,b′〉, which is inequality (8).

Lemma 6.4. Suppose a = (a1, . . . , aA) and b = (b1, . . . , bA) are vec-
tors, with all standard components distinct, in the A-dimensional Eu-
clidean space RA such that 0 < a1 < a2 < . . . < aA and 0 <
bα for α = 1, . . . , A. For each permutation σ of {1, 2, . . . , A}, let σb =
(bσ(1), bσ(2), . . . , bσ(A)). Then, of the products 〈a, σb〉 corresponding to all
the different permutations σ, a largest one is delivered by that permuta-
tion σ∗ for which bσ∗(1) < bσ∗(2) < . . . < bσ∗(A).
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Proof. Applying BubbleSort [34] to the numerical sequence

b1, . . . , bA, (9)

one obtains a sequence σ1, σ2, . . . , σJ−1, σJ = σ∗ of permutations of
{1, 2, . . . , A}, every two consecutive ones differing by a transposition that
puts two elements of (9) in increasing order. By lemma 6.3, 〈a, σj−1b〉 <
〈a, σjb〉 for j = 2, 3, . . . , J . Thus, the largest of the products 〈a, σjb〉 is
given by σJ = σ∗.

The following helps locate a DICP closest to a given y.

Theorem 6.2. If y and a DICP p lie in the same basic polyhedral angle,
then p is a closest DICP to y.

Proof. For this proof, change coordinates so that M is now the origin,
and d points along the positive diagonal. If q were a DICP closer to
y than p is, then the permutation σ such that q = σp would satisfy
〈σp,y〉 > 〈p,y〉, contradicting lemma 6.4.

6.3.7 Existence and Nonexistence of Feasible Solutions

Lemma 6.5. (A sufficient condition for the existence of a feasible solu-
tion.) If y0 is in a safe wedge, then there exists a feasible solution with
initial state y0.

Proof. Consider the trajectory y(t) = y0+ts 1
|d|∞d, with t increasing to

the value T for which y(T ) lies on the distal boundary. By construction,
the trajectory is feasible, and y(T ) lies in a safe wedge. The state yT ,
taken to be the initial state for a new, (A−1)-dimensional, problem, lies
in a safe wedge of the new ambient (A− 1)-dimensional space. (For, in
the state yT , at least one aircraft, say α-th, has exited the airspace, so
all the pairwise conflict zones involving α are removed.) Consequently,
the lemma holds by induction on A.

Theorem 6.3. (A sufficient condition for the absence of feasible so-
lutions.) If a pairwise conflict zone (4) (not necessarily with a largest
protrusion) is such that C(y0)∩∂Fα1,α2 is contained entirely in the con-
flicting slab Hα1,α2;−1 ∩ Hα1,α2;+1 (Fig. 9C), then there is no feasible
solution with initial state y0.

Proof. In a cone C(y0) so positioned, every attainable collective trajec-
tory reaches a conflicting state before reaching the target set.
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7 A Polynomial-Time Speed Control Algorithm

for Computing a Feasible Solution or Report-

ing That None Was Found

Keep the notation introduced above. In the following algorithm, the
computational cost (abbreviated C.c.) of each step is given in square
brackets.

Given: An initial state y0, global continuous state space (completely
determined by (M− y0)), and the pairwise conflict zones (4).

1. Find all conflicting slabs that contain y0. [C.c.: (A2 ) = O(A2).]

2. If y0 lies in no conflicting slab, i.e., lies in a safe wedge, exit the
algorithm, returning the speed advisory constructed in lemma 6.5.
[C.c.: O(A).]

3. Test whether the collective state y0 is in any of the pairwise conflict
zones (4). [C.c.: O(A2).] If it is, go to step 8.

4. Find a DICP p closest to y0. [By theorem 6.2, the computational
cost of this step is O(A log2 A).]

5. Compute the state y1 = p + αd that lies on the boundary of
C(y0). [C.c.: O(A).]

Remark 7.1. By construction, the state y1 lies in a safe wedge,
hence the segment y1p is a feasible trajectory (lemma 6.5). If
segment y0y1 is feasible, then the trajectory y0y1p is feasible and,
by lemma 6.2, extends to a feasible solution.

6. If segment y0y1 is feasible, exit the algorithm, returning the speed
advisory for the trajectory described in remark 7.1. [C.c.: O(A2).
Computations are required to check the feasibility of y0 y1.]

7. (In this step, let Γ denote the hyperplane orthogonal to d and
passing through the origin. Orthogonal projection onto Γ will also
be denoted by Γ.) Segment y0 y1 has been found infeasible. Use a
fixed number of iterations of the Bisection Method to look for the
parameter β that determines the point q = β Γp such that the
point y1;∗, defined as the intersection between the line through q
parallel to d and the boundary of C(y0), yields a feasible segment
y0 y1;∗. If this segment is found, return a speed advisory for the
trajectory y0 y1;∗p (analogously to step 5). Otherwise, go to step
8.

8. Exit the algorithm with the message, “Cannot produce a conflict-
free speed advisory by speed control only.”
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Table 1. The output format of an advisory segment.

a/c 1 speed a/c 2 speed . . . a/c A speed TTF

8 Sample Numerical Solutions

If a feasible speed advisory is found by the algorithm of section 7 suc-
cessfully, it is output as one or more rectilinear segments, each called an
advisory segment and conforming to the format shown in Table 1. Here
TTF stands for the time to fly (with that speed) and indicates the time
duration in which the advisory segment is to be traversed. However, in
the numerical results presented below (Table 2), instead of showing all
the individual speeds, the following abbreviated format will be used:

min. of the A speeds max. of the A speeds TTF (10)

100 150 200 250 300 350 400 450 500 550 600
240

260

280

300

320

340

360

380

400

420

 nmi

 n
m
i

Elapsed time (hrs): 0

# aircraft: 23; actual speed min & max: [211.84, 250]

arrival runway 

Figure 10. The initial state of a traffic scenario for 23 aircraft. To capture
airspace adequately, an aspect ratio different from 1 is used. The thin
arrows indicate the directions of the traffic.

The above algorithm was applied to a number of arriving traffic sce-
narios in the portion of the LAX airspace shown in Fig. 1. Although all
the paths in this airspace portions converge to one runway, such conver-
gence is not a requirement: the algorithm is applicable to all situations
where the aircraft follow pre-determined paths. The solutions found for
two of the scenarios, each with two advisory segments, are summarized
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Table 2. Each of the Tables gives a 2-segment speed advisory and TTF
for an arriving traffic scenarios. In columns 4-6 of each Table, each line
fits format (10).

#
a/c

y0 advis.
seg.

min.
speed
(kts)

max.
speed
(kts)

seg.
TTF
(hr)

23 Fig. 10
1
2

211.84
250.00

250.00
250.00

0.56
0.41

#
a/c

y0 advis.
seg.

min.
speed
(kts)

max.
speed
(kts)

seg.
TTF
(hr)

24 not
shown

1
2

199.11
250.00

250.00
250.00

0.59
0.44

in Table 2. The initial states are conflict-free. One of the two scenarios
is depicted in Fig. 10, with circles of radius r centered at the aircraft.

9 Discussion

The above HCS framework addresses simultaneously the following issues
in Air Traffic Management and adjacent fields: scheduling, speed advi-
sory generation, conflicts (avoidance, detection, and recovery), compu-
tational efficiency, and algorithm correctness. The theory and algorithm
given above are mainly a proof of concept, intended to demonstrate how
HCS can be used to obtain provably correct solutions efficiently. The
following are some directions for further research.

Control equations with inertia: A model more realistic than the dy-
namical law (2) should include inertia, thus making the agents’s acceler-
ation (and not speed) the quantity directly controllable.

Allowing new aircraft to enter the airspace during the computation: A
reasonable direction is a search for geometric insight into those entrances
for which the original, A-dimensional, problem has a feasible solution
but the newly obtained one does not. The problem above, together
with the Scheduled Routing Problem formulated in [12], suggest that
such insight would be valuable not only in air traffic management and in
airspace design, but also in the general field of multi-agent coordination.
In published literature, entrance of new aircraft into the system has been
considered in the context of the dynamic Aircraft Scheduling (Landing)
Problem (see [26]), which, however, does not consider separation except
at the runway.

Conflict recovery: Recovering from a conflicting state yc in the above
model is equivalent to finding–or establishing the absence of–a shortest
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(or otherwise optimal) attainable trajectory from yc to a nearest safe
wedge. Theorem 6.2 is instrumental here, as a nearest safe wedge is with
a nearest DICP, and the latter is computable in time polynomial in A.

Path control (in ATM operational terminology, Vectors): In opera-
tional ATM practice, an aircraft is often allowed, and even instructed,
to deviate from a given route. Such deviations are known in Air Traffic
Operations as path control. This deformation of the given route results
in a deformation of the global continuous state space and of the pairwise
conflict zones. Insight into the relation between the two deformations
can be instrumental in extending the model to include path control.

Modeling uncertainty of control execution: Control of aircraft is af-
fected by such sources of uncertainty as human factors, aircraft perfor-
mance, and weather. In the context of the above HCS, such uncertainty
generally leads to stochastic dynamical law [35, chapter 14]. Among the
most common sources of random perturbation to an aircraft’s execu-
tion of control is wind. In the special case when each aircraft is cleared
for a procedure that prescribes a specific route consisting of rectilinear
segments, connected by fixed-radius turns (e.g., RF-leg types [36]), the
aircraft’s navigation system will keep the aircraft on the route even in
the presence of wind. Therefore, the wind affects only those components
of the aircraft’s speed and acceleration tangential to the route. This
suggests a stochastic dynamical law, for the Fully Routed Problem, that
includes inertia (i.e., the control variable is the acceleration), governs
the arc length coordinate yα and the arc length speed sα as stochastic
processes serving as the state variables, and has the form

dyα = sα dt, dsα = aα dt+ aw dt+ dWα, α ∈ A

where aw is the (possibly time-dependent) mean of the tangential com-
ponent of the acceleration due to wind, and W is a Wiener process that
characterizes the fluctuations of the acceleration due to wind about the
mean.
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